Current Volume

Νέα σελίδα 1

Share us

FacebookMySpaceTwitterDiggDeliciousStumbleuponGoogle BookmarksReddit
Panagiotis N. Manoudis, Dafni Gemenetzis and Ioannis Karapanagiotis

Panagiotis N. Manoudis, Dafni Gemenetzis and Ioannis Karapanagiotis

kara image2

Polysiloxane materials have been used in conservation and protection of stone monuments and other outdoor objects of the cultural heritage for decades. Enhancing the inherent hydrophobic character of the siloxane materials is highly desirable as it can promote their protection efficacy against the degradation effects which are induced by rain water and/or humidity. We show that mixing a solution of a polysiloxane material with a small amount (1% w/w) of silica nanoparticles leads to the formation of a structured surface which has superhydrophobic properties i.e. the contact angle (CA) of a water droplet on the surface of the polysiloxane+nanoparticle film is >150°.
We monitor the evaporation process of the water droplet on the surface of the composite (polysiloxane+nanoparticle) film and show that it follows the same evaporation mode reported for a water droplet resting on the surface of a natural rose petal. In particular, the evaporation of droplets on both composite and natural surfaces follows the constant contact radius (CCR) mode: the contact area between water and surface remains constant with time and the contact angle decreases. Moreover, we report that in the course of evaporation the relationship of the volume of the droplet to the 2/3 power (V2/3) with time (t) is linear.

Affiliates

Who's online

We have 6 guests and no members online